论文标题
SaccadeNet:快速准确的对象检测器
SaccadeNet: A Fast and Accurate Object Detector
论文作者
论文摘要
对象检测是迈向整体场景理解的重要一步。大多数现有的对象检测算法一次都进入某些对象区域,然后预测对象位置。但是,神经科学家透露,人类不会以固定的稳定看待现场。相反,人眼四处走动,找到信息丰富的部分以了解对象位置。这个主动感知的运动过程称为\ textit {acccade}。 在本文中,受这种机制的启发,我们提出了一个称为\ textit {saccadeNet}的快速准确对象检测器。它包含四个主要模块,即\ cenam,\ coram,\ atm和\ aggatt,它们允许其参与到不同的信息对象关键点,并预测对象位置从粗糙到罚款。 \ coram〜仅在训练期间用于提取更有用的角度功能,从而带来自由午餐的性能提升。在MS可可数据集上,我们在28 fps时实现了40.4 \%地图的性能,在118 fps时达到30.5 \%地图。在所有实时对象探测器中,百分比的运行速度比25 fps更快,我们的saccadeNet达到了最佳检测性能,这证明了提出的检测机制的有效性。
Object detection is an essential step towards holistic scene understanding. Most existing object detection algorithms attend to certain object areas once and then predict the object locations. However, neuroscientists have revealed that humans do not look at the scene in fixed steadiness. Instead, human eyes move around, locating informative parts to understand the object location. This active perceiving movement process is called \textit{saccade}. %In this paper, Inspired by such mechanism, we propose a fast and accurate object detector called \textit{SaccadeNet}. It contains four main modules, the \cenam, the \coram, the \atm, and the \aggatt, which allows it to attend to different informative object keypoints, and predict object locations from coarse to fine. The \coram~is used only during training to extract more informative corner features which brings free-lunch performance boost. On the MS COCO dataset, we achieve the performance of 40.4\% mAP at 28 FPS and 30.5\% mAP at 118 FPS. Among all the real-time object detectors, %that can run faster than 25 FPS, our SaccadeNet achieves the best detection performance, which demonstrates the effectiveness of the proposed detection mechanism.