论文标题

高维二维的随机字段用于高维分类观测值

Gaussian-Dirichlet Random Fields for Inference over High Dimensional Categorical Observations

论文作者

Soucie, John E. San, Sosik, Heidi M., Girdhar, Yogesh

论文摘要

我们提出了一个生成模型,用于高维分类观测值的时空分布。这些通常由配备成像传感器(例如相机)的机器人与图像分类器配对,并可能产生数千个类别的观察结果。所提出的方法结合了使用dirichlet分布在观察到的类别之间使用潜在变量和高斯工艺建模的稀疏共存在关系,以建模潜在变量的时空分布。本文中的实验表明,所得模型能够有效,准确地近似高维分类测量值的时间分布,例如海洋中微观生物体的分类学观察,即使在远离(持有)位置,远离其他样品的位置也是如此。这项工作的主要动机是在高维分类领域上部署内容丰富的路径规划技术,到目前为止,该领域一直限于标量或低维矢量观测值。

We propose a generative model for the spatio-temporal distribution of high dimensional categorical observations. These are commonly produced by robots equipped with an imaging sensor such as a camera, paired with an image classifier, potentially producing observations over thousands of categories. The proposed approach combines the use of Dirichlet distributions to model sparse co-occurrence relations between the observed categories using a latent variable, and Gaussian processes to model the latent variable's spatio-temporal distribution. Experiments in this paper show that the resulting model is able to efficiently and accurately approximate the temporal distribution of high dimensional categorical measurements such as taxonomic observations of microscopic organisms in the ocean, even in unobserved (held out) locations, far from other samples. This work's primary motivation is to enable deployment of informative path planning techniques over high dimensional categorical fields, which until now have been limited to scalar or low dimensional vector observations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源