论文标题

反向Faber-Krahn的不平等,用于截短的Laplacian操作员

Reverse Faber-Krahn inequality for a truncated laplacian operator

论文作者

Parini, Enea, Rossi, Julio, Salort, Ariel

论文摘要

在本文中,我们证明了完全非线性特征的主要特征值$μ_1(ω)$的反向Faber -krahn不平等问题, \\ u&=&0&\ text {on} \ partialω。 \ end {array} \ right。 \]这里$λ_n(d^2 u)$代表$ u $的Hessian Matrix的最大特征值。更准确地说,我们证明,对于开放,有限的,凸域$ω\ subset \ mathbb {r}^n $,不等式\ [μ_1(ω)\ leq \ frac \ frac {π^2} μ_1(b _ {\ text {diam}(ω)/2}),\],其中$ \ text {diam}(ω)$是$ω$的直径为true。不平等实际上意味着更强的结果,即,在直径约束下球的最大性。 此外,我们在不同种类的约束下讨论了$μ_1(ω)$的最小化。

In this paper we prove a reverse Faber-Krahn inequality for the principal eigenvalue $μ_1(Ω)$ of the fully nonlinear eigenvalue problem \[ \label{eq} \left\{\begin{array}{r c l l} -λ_N(D^2 u) & = & μu & \text{in }Ω, \\ u & = & 0 & \text{on }\partial Ω. \end{array}\right. \] Here $ λ_N(D^2 u)$ stands for the largest eigenvalue of the Hessian matrix of $u$. More precisely, we prove that, for an open, bounded, convex domain $Ω\subset \mathbb{R}^N$, the inequality \[ μ_1(Ω) \leq \frac{π^2}{[\text{diam}(Ω)]^2} = μ_1(B_{\text{diam}(Ω)/2}),\] where $\text{diam}(Ω)$ is the diameter of $Ω$, holds true. The inequality actually implies a stronger result, namely, the maximality of the ball under a diameter constraint. Furthermore, we discuss the minimization of $μ_1(Ω)$ under different kinds of constraints.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源