论文标题

使用深层卷积神经网络改善数据驱动的全球天气预测

Improving data-driven global weather prediction using deep convolutional neural networks on a cubed sphere

论文作者

Weyn, Jonathan A., Durran, Dale R., Caruana, Rich

论文摘要

我们使用深层卷积神经网络(CNN)提出了一个明显的数据驱动的全球天气预测框架,以预测全球网格上的几个基本大气变量。此框架中的新开发项目包括一个离线音量保守的映射到立方体网格,CNN体系结构的改进以及预测序列中多个步骤的损耗函数的最小化。立方体重新映射可最大程度地减少执行卷积操作的立方体面部的失真,并为CNN中的填充提供自然的边界条件。我们改进的模型会产生无限期稳定的天气预报,并在数周及更长的时间内产生逼真的天气模式。对于中等范围的预测,我们的模型显着优于持久性,气候学和粗分辨率的动态数值天气预测(NWP)模型。毫不奇怪,我们的预测比高分辨率最先进的运营NWP系统的预测要差。我们的数据驱动模型能够学会从很少的输入大气状态变量中预测复杂的表面温度模式。在年度尺度上,我们的模型仅由大气顶太阳能强迫的规定变化驱动的现实季节性周期。尽管目前它的准确性不如操作天气预报模型,但我们的数据驱动的CNN执行速度要快得多,这表明机器学习可能被证明是大型预测的有价值工具。

We present a significantly-improved data-driven global weather forecasting framework using a deep convolutional neural network (CNN) to forecast several basic atmospheric variables on a global grid. New developments in this framework include an offline volume-conservative mapping to a cubed-sphere grid, improvements to the CNN architecture, and the minimization of the loss function over multiple steps in a prediction sequence. The cubed-sphere remapping minimizes the distortion on the cube faces on which convolution operations are performed and provides natural boundary conditions for padding in the CNN. Our improved model produces weather forecasts that are indefinitely stable and produce realistic weather patterns at lead times of several weeks and longer. For short- to medium-range forecasting, our model significantly outperforms persistence, climatology, and a coarse-resolution dynamical numerical weather prediction (NWP) model. Unsurprisingly, our forecasts are worse than those from a high-resolution state-of-the-art operational NWP system. Our data-driven model is able to learn to forecast complex surface temperature patterns from few input atmospheric state variables. On annual time scales, our model produces a realistic seasonal cycle driven solely by the prescribed variation in top-of-atmosphere solar forcing. Although it is currently less accurate than operational weather forecasting models, our data-driven CNN executes much faster than those models, suggesting that machine learning could prove to be a valuable tool for large-ensemble forecasting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源