论文标题
部分量扩大差异性
Partially volume expanding diffeomorphisms
论文作者
论文摘要
如果将雅各布式限制在包含不稳定捆绑包$ e^u $的任何超平面上,我们称部分双曲线差异\ emph \ emph {部分卷扩展}大于$ 1 $。这是一个$ C^1 $开放属性。我们表明,任何$ c^{1+} $部分地扩大了扩展的差异性,均承认有限的许多物理措施,其盆地的结合具有完整的体积。
We call a partially hyperbolic diffeomorphism \emph{partially volume expanding} if the Jacobian restricted to any hyperplane that contains the unstable bundle $E^u$ is larger than $1$. This is a $C^1$ open property. We show that any $C^{1+}$ partially volume expanding diffeomorphisms admits finitely many physical measures, the union of whose basins has full volume.