论文标题
壳在增强金属芯壳纳米颗粒的荧光中的关键作用
The critical role of shell in enhanced fluorescence of metal-dielectric core-shell nanoparticles
论文作者
论文摘要
大规模仿真是通过转移基质方法进行的,以揭示金属丝芯壳颗粒的最佳条件,以诱导其表面上最大的荧光。最佳核心和壳半径均确定常用的等离子核(AU和AG)和介电壳(SIO2,AL2O3,ZnO),确定在550〜850 nm(AU核心)和390〜500 〜500 NM(AG CORE)频段内的每个波长的最大荧光增强。构成整个波长间隔的核心壳纳米颗粒的最大可实现荧光增强因子的峰值随着壳折射率的增加而增加,并且在600〜700 nm和400〜450 nm的波长范围内,AU和AG核的值最多可达9和70,这比相应的金属范围更大。用水宿主代替空气具有巨大的效果,即以最大可实现的荧光的峰值值几乎将最佳核心壳构型的大小减半。对于AU核,与同质AU粒子相比,在第一个近红外生物学窗口(NIR-I)之间波长的荧光增强功能可以改善两倍。相对于相应优化的芯壳粒子的局部表面等离子体共振长度,(蓝移)高达50 nm。我们的结果提供了重要的设计规则和一般指南,以实现用于成像,光源和生物应用的多功能平台。
Large scale simulations are performed by means of the transfer-matrix method to reveal optimal conditions for metal-dielectric core-shell particles to induce the largest fluorescence on their surfaces. With commonly used plasmonic cores (Au and Ag) and dielectric shells (SiO2, Al2O3, ZnO), optimal core and shell radii are determined to reach maximum fluorescence enhancement for each wavelength within 550~850 nm (Au core) and 390~500 nm (Ag core) bands, in both air and aqueous hosts. The peak value of the maximum achievable fluorescence enhancement factors of core-shell nanoparticles, taken over entire wavelength interval, increases with the shell refractive index and can reach values up to 9 and 70 for Au and Ag cores, within 600~700 nm and 400~450 nm wavelength ranges, respectively, which is much larger than that for corresponding homogeneous metal nanoparticles. Replacing air by an aqueous host has a dramatic effect of nearly halving the sizes of optimal core-shell configurations at the peak value of the maximum achievable fluorescence. In the case of Au cores,the fluorescence enhancements for wavelengths within the first near-infrared biological window (NIR-I) between 700 and 900 nm can be improved twofold compared to homogeneous Au particle when the shell refractive index ns > 2. As a rule of thumb, the wavelength region of optimal fluorescence (maximal nonradiative decay) turns out to be red-shifted (blue-shifted) by as much as 50 nm relative to the localized surface plasmon resonance wavelength of corresponding optimized core-shell particle. Our results provide important design rules and general guidelines for enabling versatile platforms for imaging, light source, and biological applications.