论文标题

学习无监督域适应的可转移和判别特征

Learning transferable and discriminative features for unsupervised domain adaptation

论文作者

Du, Yuntao, Zhang, Ruiting, Zhang, Xiaowen, Yao, Yirong, Lu, Hengyang, Wang, Chongjun

论文摘要

尽管取得了显着的进展,但很难在没有任何标记数据的情况下诱导监督分类器。无监督的域适应能够通过将知识从标记的源域转移到未标记的目标域来克服这一挑战。可传递性和可区分性是表征特征表示优越性以实现成功域适应性的两个关键标准。在本文中,提出了一种称为\ textit {学习可转移和歧视性特征的新方法,以同时优化这两个目标。一方面,进行分配对准以减少域差异并学习更多可转移表示形式。我们没有采用\ textIt {最大平均差异}(MMD),该(MMD)仅捕获一阶统计信息以衡量分布差异,而是采用了最近提出的称为\ textit {最大平均值和协方差差异}(MMCD)的统计量(RKHS)。另一方面,我们建议通过歧管正则化和全局歧视信息探索局部歧视性信息,通过最小化所提出的\ textit {class Condusion}的目标,分别学习更多的判别特征。我们将这两个目标集成到\ textit {结构风险最小化}(RSM)框架中,并学习一个域不变的分类器。全面的实验是在五个现实世界数据集上进行的,结果验证了所提出的方法的有效性。

Although achieving remarkable progress, it is very difficult to induce a supervised classifier without any labeled data. Unsupervised domain adaptation is able to overcome this challenge by transferring knowledge from a labeled source domain to an unlabeled target domain. Transferability and discriminability are two key criteria for characterizing the superiority of feature representations to enable successful domain adaptation. In this paper, a novel method called \textit{learning TransFerable and Discriminative Features for unsupervised domain adaptation} (TFDF) is proposed to optimize these two objectives simultaneously. On the one hand, distribution alignment is performed to reduce domain discrepancy and learn more transferable representations. Instead of adopting \textit{Maximum Mean Discrepancy} (MMD) which only captures the first-order statistical information to measure distribution discrepancy, we adopt a recently proposed statistic called \textit{Maximum Mean and Covariance Discrepancy} (MMCD), which can not only capture the first-order statistical information but also capture the second-order statistical information in the reproducing kernel Hilbert space (RKHS). On the other hand, we propose to explore both local discriminative information via manifold regularization and global discriminative information via minimizing the proposed \textit{class confusion} objective to learn more discriminative features, respectively. We integrate these two objectives into the \textit{Structural Risk Minimization} (RSM) framework and learn a domain-invariant classifier. Comprehensive experiments are conducted on five real-world datasets and the results verify the effectiveness of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源