论文标题
关于高维功能时间序列的一致性和稀疏性,并应用于自动化
On Consistency and Sparsity for High-Dimensional Functional Time Series with Application to Autoregressions
论文作者
论文摘要
建模大量功能时间序列是在广泛的真实应用中出现的。在这样的情况下,不仅可以在功能变量的数量上差异,甚至比时间依赖的功能观察值大,而且每个函数本身都是无限二维对象,从而提出了一个具有挑战性的任务。在本文中,我们提出了一个三步程序,以估计高维函数时间序列模型。为了为三步程序提供理论保证,我们专注于多元固定过程,并根据其光谱特性提出了一种新型的功能稳定性度量。这种稳定性措施促进了对样品(自动)协方差函数的某些有用浓度界限的发展,这是在高维环境中进一步收敛分析的基本工具。由于功能主成分分析(FPCA)是第一步中的关键维度缩小技术之一,我们还研究了FPCA框架下相关估计项的非反应性特性。为了说明重要的应用,我们考虑了向量功能自回归模型,并开发了一种正则化方法,以估计稀疏性约束下的自回归系数功能。使用我们衍生的非质子结果,我们研究了高维缩放下的正则化估计值的收敛性。最后,通过模拟和公共财务数据集对所提出方法的有限样本性能进行了检查。
Modelling a large collection of functional time series arises in a broad spectral of real applications. Under such a scenario, not only the number of functional variables can be diverging with, or even larger than the number of temporally dependent functional observations, but each function itself is an infinite-dimensional object, posing a challenging task. In this paper, we propose a three-step procedure to estimate high-dimensional functional time series models. To provide theoretical guarantees for the three-step procedure, we focus on multivariate stationary processes and propose a novel functional stability measure based on their spectral properties. Such stability measure facilitates the development of some useful concentration bounds on sample (auto)covariance functions, which serve as a fundamental tool for further convergence analysis in high-dimensional settings. As functional principal component analysis (FPCA) is one of the key dimension reduction techniques in the first step, we also investigate the non-asymptotic properties of the relevant estimated terms under a FPCA framework. To illustrate with an important application, we consider vector functional autoregressive models and develop a regularization approach to estimate autoregressive coefficient functions under the sparsity constraint. Using our derived non-asymptotic results, we investigate convergence properties of the regularized estimate under high-dimensional scaling. Finally, the finite-sample performance of the proposed method is examined through both simulations and a public financial dataset.