论文标题
分解降低的Kronecker系数
Breaking down the reduced Kronecker coefficients
论文作者
论文摘要
我们解决了\ emph {降低的kronecker系数} $ \ overline {g}(α,β,γ)$上的三个相互关联的问题。首先,我们反驳\ emph {饱和属性},该\ emph {饱和属性}指出$ \ + edline {g}(nα,nβ,nγ)> 0 $ $ $ \ overline {g}(α,β,β,γ)> 0 $ 0 $ $ n> 1 $。其次,我们在所有$ |α|+|+|+|γ|中,最大$ \叠加{g}(α,β,γ)$。 = n $。最后,我们表明,计算$ \ overline {g}(λ,μ,ν)$是强烈的$ \#p $ -hard,即$ \#p $ -hard,当输入$(λ,μ,μ,ν)$是一致的。
We resolve three interrelated problems on \emph{reduced Kronecker coefficients} $\overline{g}(α,β,γ)$. First, we disprove the \emph{saturation property} which states that $\overline{g}(Nα,Nβ,Nγ)>0$ implies $\overline{g}(α,β,γ)>0$ for all $N>1$. Second, we esimate the maximal $\overline{g}(α,β,γ)$, over all $|α|+|β|+|γ| = n$. Finally, we show that computing $\overline{g}(λ,μ,ν)$ is strongly $\# P$-hard, i.e. $\#P$-hard when the input $(λ,μ,ν)$ is in unary.