论文标题
实现GKM振动和哈密顿式非喀勒氏行动的新例子
Realization of GKM fibrations and new examples of Hamiltonian non-Kähler actions
论文作者
论文摘要
我们将抽象$ 3 $ 3 $的GKM图表的纤维分类为$ 2 $ - 定期的纤维图,并表明这种类型的所有光纤签名的纤维都可以实现,因为Equivariant Complex Complex Rank Rank $ 2 $ vector $ 2 $ vector Bundles超过了Quasitoric $ 4 $ $ $ - folds或$ s^4 $。我们研究了总空间上不变(稳定)几乎复杂,符号和kähler结构的存在。通过这种方式,我们获得了许多Kähler歧管,并以汉密尔顿非kähler行动为$ 6 $,尤其是规定的单骨骼,尤其是规定的隔离固定点。
We classify fibrations of abstract $3$-regular GKM graphs over $2$-regular ones, and show that all fiberwise signed fibrations of this type are realized as the projectivization of equivariant complex rank $2$ vector bundles over quasitoric $4$-folds or $S^4$. We investigate the existence of invariant (stable) almost complex, symplectic, and Kähler structures on the total space. In this way we obtain infinitely many Kähler manifolds with Hamiltonian non-Kähler actions in dimension $6$ with prescribed one-skeleton, in particular with prescribed number of isolated fixed points.