论文标题

组合激光分子束外延系统与专门的低温扫描隧道显微镜集成

Combinatorial Laser Molecular Beam Epitaxy System Integrated with Specialized Low-temperature Scanning Tunneling Microscopy

论文作者

He, Ge, Wei, Zhongxu, Feng, Zhongpei, Yu, Xiaodong, Zhu, Beiyi, Liu, Li, Jin, Kui, Yuan, Jie, Huan, Qing

论文摘要

我们提出了一个新开发的设施,该设施由组合激光分子束外延系统和原位扫描隧道显微镜(STM)组成。该设施旨在通过高级高通量膜合成技术以及随后的表面形态和电子状态的快速表征来以高效的方式加速材料研究。与通过常规方法沉积的均匀膜相比,所谓的组合薄膜将有益于确定不同材料的准确相图,这是由于对参数的控制改善,例如化学替代和由旋转瘤方法引起的样品厚度。在低温和超高真空条件下工作的特殊设计的STM优化了组合薄膜的表征,XY粗运动范围为15毫米$ \ times $ 15毫米,并具有子微米计位置精度。详细介绍了整体配置以及一些关键方面,例如样品持有人设计,扫描仪头和样品/尖端/目标转移机制。通过合成具有梯度厚度的高质量超导FESE薄膜,高度定向的热解石墨的成像表面,AU(111),BI2SR2CACU2O8+δ(BSCCO)和FESE的高质量超导FESE薄膜和FESE。此外,我们还获得了隧道连接的清洁噪声光谱和BSCCO的超导能隙。成功制造这样的设施为下一代设计用于实验材料研究的设备打开了一个新窗口。

We present a newly developed facility, comprised of a combinatorial laser molecular beam epitaxy system and an in-situ scanning tunneling microscopy (STM). This facility aims at accelerating the materials research in a highly efficient way, by advanced high-throughput film synthesis techniques and subsequent fast characterization of surface morphology and electronic states. Compared with uniform films deposited by conventional methods, the so-called combinatorial thin films will be beneficial to determining the accurate phase diagrams of different materials due to the improved control of parameters such as chemical substitution and sample thickness resulting from a rotarymask method. A specially designed STM working under low-temperature and ultra-high vacuum conditions is optimized for the characterization of combinatorial thin films, in an XY coarse motion range of 15 mm $\times$ 15 mm and with sub-micrometer location precision. The overall configuration as well as some key aspects like sample holder design, scanner head, and sample/tip/target transfer mechanism are described in detail. The performance of the device is demonstrated by synthesizing high-quality superconducting FeSe thin films with gradient thickness, imaging surfaces of highly oriented pyrolytic graphite, Au (111), Bi2Sr2CaCu2O8+δ (BSCCO) and FeSe. In addition, we have also obtained clean noise spectra of tunneling junctions and the superconducting energy gap of BSCCO. The successful manufacturing of such a facility opens a new window for the next generation of equipment designed for experimental materials research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源