论文标题

周期性RSOS模型和任何链链中的拓扑缺陷

Topological defects in periodic RSOS models and anyonic chains

论文作者

Belletête, J., Gainutdinov, A. M., Jacobsen, J. L., Saleur, H., Tavares, T. S.

论文摘要

我们使用RSO和Anyonic自旋链在最小模型CFT中提供了所有拓扑缺陷的晶格正则化。对于类型$(1,s)$的缺陷,我们将结果与最初在fibonacci anyons中鉴定的“拓扑对称性”联系起来[phys。莱特牧师。 98,160409(2007)],以及[1811.02551]中讨论的Aggine temperley-Lieb代数中心。我们表明,缺陷的拓扑性质在晶格上也是如此。相比之下,我们的$ $(R,1)$的缺陷仅在连续限制中。识别是通过代数和伯特 - 萨茨技术的混合而获得的。我们的大部分讨论都是用哈密顿(或转移矩阵)形式主义进行的,直接和交叉的渠道都详细讨论。对于$(1,s)$的类型缺陷,我们还展示了如何实现其融合,事实证明,该融合旨在重现用于建造任何构建Anyonic链的基础单体类别的张量。

We provide a lattice regularization of all topological defects in minimal models CFTs using RSOS and anyonic spin chains. For defects of type $(1,s)$, we connect our result with the "topological symmetry" initially identified in Fibonacci anyons [Phys. Rev. Lett. 98, 160409 (2007)], and the center of the affine Temperley-Lieb algebra discussed in [1811.02551]. We show that the topological nature of the defects is exact on the lattice as well. Our defects of type $(r,1)$, in contrast, are only topological in the continuum limit. Identifications are obtained by a mix of algebraic and Bethe-ansatz techniques. Most of our discussion is framed in a Hamiltonian (or transfer matrix) formalism, and direct and crossed channel are both discussed in detail. For defects of type $(1,s)$, we also show how to implement their fusion, which turns out to reproduce the tensor product of the underlying monoidal category used to build the anyonic chain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源