论文标题

随机零阶riemannian衍生物估计和优化

Stochastic Zeroth-order Riemannian Derivative Estimation and Optimization

论文作者

Li, Jiaxiang, Balasubramanian, Krishnakumar, Ma, Shiqian

论文摘要

我们考虑了嵌入欧几里得空间中的Riemannian Submanifolds上的随机零阶优化,在此任务是解决Riemannian优化问题,仅使用嘈杂的目标函数评估。为此,我们的主要贡献是基于高斯平滑技术的Riemannian版本,提出了嘈杂的客观函数评估中的Riemannian梯度和Hessian的估计量。提出的估计器克服了流形约束的非线性的难度以及在仅在歧管上定义函数时使用欧几里得高斯平滑技术出现的问题。我们使用所提出的估计器在以下设置中解决目标函数的riemannian优化问题:(i)随机和梯度 - lipschitz(在非con和地理凸设置中),(ii)梯度 - lips-lipschitz和nont-mmooth函数的总和,以及(iii)Hessian Hessian Hessian Hessian-lipschitz。对于这些设置,我们分析了算法的甲骨文复杂性,以获取适当定义的$ε$ - 固定点或$ε$ - $ - $ - 兑现本地最小化器的概念。值得注意的是,我们的复杂性与环境欧几里得空间的维度无关,并且仅取决于所考虑的流形的固有维度。我们通过仿真结果和对机器人技术的黑盒刚度控制和黑盒攻击对神经网络的黑框刚度控制的现实应用程序来证明我们的算法的适用性。

We consider stochastic zeroth-order optimization over Riemannian submanifolds embedded in Euclidean space, where the task is to solve Riemannian optimization problem with only noisy objective function evaluations. Towards this, our main contribution is to propose estimators of the Riemannian gradient and Hessian from noisy objective function evaluations, based on a Riemannian version of the Gaussian smoothing technique. The proposed estimators overcome the difficulty of the non-linearity of the manifold constraint and the issues that arise in using Euclidean Gaussian smoothing techniques when the function is defined only over the manifold. We use the proposed estimators to solve Riemannian optimization problems in the following settings for the objective function: (i) stochastic and gradient-Lipschitz (in both nonconvex and geodesic convex settings), (ii) sum of gradient-Lipschitz and non-smooth functions, and (iii) Hessian-Lipschitz. For these settings, we analyze the oracle complexity of our algorithms to obtain appropriately defined notions of $ε$-stationary point or $ε$-approximate local minimizer. Notably, our complexities are independent of the dimension of the ambient Euclidean space and depend only on the intrinsic dimension of the manifold under consideration. We demonstrate the applicability of our algorithms by simulation results and real-world applications on black-box stiffness control for robotics and black-box attacks to neural networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源