论文标题

Autofis:单击率预测的分解模型中的自动特征交互选择

AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction

论文作者

Liu, Bin, Zhu, Chenxu, Li, Guilin, Zhang, Weinan, Lai, Jincai, Tang, Ruiming, He, Xiuqiang, Li, Zhenguo, Yu, Yong

论文摘要

学习功能互动对于推荐系统中的点击率预测至关重要。在大多数现有的深度学习模型中,特征交互是手动设计的,要么简单地列举。但是,列举所有特征交互带来很大的内存和计算成本。更糟糕的是,无用的互动可能会引入噪音并使训练过程复杂化。在这项工作中,我们提出了一种称为自动特征交互选择(AUTOFIS)的两阶段算法。 Autofis可以自动确定具有计算成本的分解模型的重要特征交互,等效于训练目标模型以收敛。在\ emph {搜索阶段}中,我们没有通过引入体系结构参数来放宽选择以保持连续的选择。通过在体系结构参数上实现正则优化器,该模型可以在模型的训练过程中自动识别和删除冗余特征交互。在\ emph {重新训练阶段}中,我们将体系结构参数保留为注意单元,以进一步提高性能。在三个大规模数据集(两个公共基准,一个私有基准)上进行离线实验表明,自动纤维可以显着改善各种基于FM的模型。 AUTOFIS已被部署到华为应用商店推荐服务的培训平台上,在线10天的A/B测试表明,Autofis在CTR和CVR方面分别将DEEPFM模型提高了20.3 \%和20.1 \%。

Learning feature interactions is crucial for click-through rate (CTR) prediction in recommender systems. In most existing deep learning models, feature interactions are either manually designed or simply enumerated. However, enumerating all feature interactions brings large memory and computation cost. Even worse, useless interactions may introduce noise and complicate the training process. In this work, we propose a two-stage algorithm called Automatic Feature Interaction Selection (AutoFIS). AutoFIS can automatically identify important feature interactions for factorization models with computational cost just equivalent to training the target model to convergence. In the \emph{search stage}, instead of searching over a discrete set of candidate feature interactions, we relax the choices to be continuous by introducing the architecture parameters. By implementing a regularized optimizer over the architecture parameters, the model can automatically identify and remove the redundant feature interactions during the training process of the model. In the \emph{re-train stage}, we keep the architecture parameters serving as an attention unit to further boost the performance. Offline experiments on three large-scale datasets (two public benchmarks, one private) demonstrate that AutoFIS can significantly improve various FM based models. AutoFIS has been deployed onto the training platform of Huawei App Store recommendation service, where a 10-day online A/B test demonstrated that AutoFIS improved the DeepFM model by 20.3\% and 20.1\% in terms of CTR and CVR respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源