论文标题
在非局部但全球电性限值电解质介质中的电压分布:纳米生理的应用
Voltage distribution in a non-locally but globally electroneutral confined electrolyte medium: applications for nanophysiology
论文作者
论文摘要
亚微米细胞结构域中电压的分布仍然很少了解。在神经元中,电压是由于离子浓度的差异而导致的,而离子浓度的差异是由泵和交换器连续维持的。但是,目前尚不清楚如何通过快速移动的阳性离子通过缓慢扩散带负电荷的蛋白来平衡的过量阳性离子如何维持电性中中不动性。使用电扩散理论,我们在这里研究了一个通用结构域中的电压分布,该电压分布由两个(分别为三个)维度的两个同心磁盘(分别为球)组成,其中负电荷固定在内部域中。当维持全球但不是局部的电性中下语时,我们在分析和数值上求解了泊松 - 尼斯特 - 尼斯特式方程,在维度1(平面)和2(圆柱形)中,求解电压在空间尺度上的变化大大变化,该空间尺度比Debye筛选长度大得多,该长度比Debye筛选长度大得多,该长度更大,该长度较大。目前的结果表明,在神经元微型室中,预计会发生远距离电压下降的变化,这可能与解释位于表面上的遥远电压门控通道的激活有关。
The distribution of voltage in sub-micron cellular domains remains poorly understood. In neurons, the voltage results from the difference in ionic concentrations which are continuously maintained by pumps and exchangers. However, it not clear how electro-neutrality could be maintained by an excess of fast moving positive ions that should be counter balanced by slow diffusing negatively charged proteins. Using the theory of electro-diffusion, we study here the voltage distribution in a generic domain, which consists of two concentric disks (resp. ball) in two (resp. three) dimensions, where a negative charge is fixed in the inner domain. When global but not local electro-neutrality is maintained, we solve the Poisson-Nernst-Planck equation both analytically and numerically in dimension 1 (flat) and 2 (cylindrical) and found that the voltage changes considerably on a spatial scale which is much larger than the Debye screening length, which assumes electro-neutrality. The present result suggests that long-range voltage drop changes are expected in neuronal microcompartments, probably relevant to explain the activation of far away voltage-gated channels located on the surface.