论文标题

带有几何深度学习的解剖上不可见纤维的术滤波

Tractogram filtering of anatomically non-plausible fibers with geometric deep learning

论文作者

Astolfi, Pietro, Verhagen, Ruben, Petit, Laurent, Olivetti, Emanuele, Masci, Jonathan, Boscaini, Davide, Avesani, Paolo

论文摘要

横学是大脑白质纤维的虚拟表示。它们是诸如术前计划以及对神经塑性或脑部疾病的调查之类的任务的主要兴趣。每个片段图由数百万纤维编码为3D二极管组成。不幸的是,这些纤维中的很大一部分在解剖学上并不合理,可以被视为跟踪算法的伪像。拖拉图过滤的常见方法基于信号重建,这是一种原则性的方法,但无法考虑大脑解剖结构的知识。在这项工作中,我们通过利用最新的启发式方法获得的地面真相注释来解决拖拉图过滤的问题,该方法根据已建立的解剖学特性将纤维标记为解剖学上可行的或不可行的。直观的想法是将光纤建模为点云,目标是研究几何深度学习模型是否以及如何捕获其解剖学特性。我们的贡献是动态边缘卷积模型的扩展,该模型利用了纤维中点的顺序关系,并以高精度的合理/不可行的纤维区分。

Tractograms are virtual representations of the white matter fibers of the brain. They are of primary interest for tasks like presurgical planning, and investigation of neuroplasticity or brain disorders. Each tractogram is composed of millions of fibers encoded as 3D polylines. Unfortunately, a large portion of those fibers are not anatomically plausible and can be considered artifacts of the tracking algorithms. Common methods for tractogram filtering are based on signal reconstruction, a principled approach, but unable to consider the knowledge of brain anatomy. In this work, we address the problem of tractogram filtering as a supervised learning problem by exploiting the ground truth annotations obtained with a recent heuristic method, which labels fibers as either anatomically plausible or non-plausible according to well-established anatomical properties. The intuitive idea is to model a fiber as a point cloud and the goal is to investigate whether and how a geometric deep learning model might capture its anatomical properties. Our contribution is an extension of the Dynamic Edge Convolution model that exploits the sequential relations of points in a fiber and discriminates with high accuracy plausible/non-plausible fibers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源