论文标题

使用复合信号神经网络捕获和解释轨迹奇异点

Capturing and Explaining Trajectory Singularities using Composite Signal Neural Networks

论文作者

Dubois, Hippolyte, Callet, Patrick Le, Hornberger, Michael, Spiers, Hugo J., Coutrot, Antoine

论文摘要

空间轨迹无处不在且复杂的信号。从城市规划到神经科学的许多研究领域,他们的分析至关重要。已经提出了几种方法来群集轨迹。他们依靠手工制作的特征,这些特征难以捕获信号的时空复杂性,或者是人工神经网络(ANN),这可能更有效但可解释。在本文中,我们介绍了一种新颖的ANN体系结构,旨在捕获一组轨迹的时空模式,同时考虑到导航器的人口统计。因此,我们的模型提取了与行为和人口统计学相关的标记。我们提出了一个组合三个简单ANN模块的复合信号分析仪(COMPSNN)。这些模块中的每一个都使用轨迹的不同信号表示,同时保持可解释。我们的COMPSNN的性能明显优于隔离的模块,并允许可视化信号的哪些部分对于区分轨迹最有用。

Spatial trajectories are ubiquitous and complex signals. Their analysis is crucial in many research fields, from urban planning to neuroscience. Several approaches have been proposed to cluster trajectories. They rely on hand-crafted features, which struggle to capture the spatio-temporal complexity of the signal, or on Artificial Neural Networks (ANNs) which can be more efficient but less interpretable. In this paper we present a novel ANN architecture designed to capture the spatio-temporal patterns characteristic of a set of trajectories, while taking into account the demographics of the navigators. Hence, our model extracts markers linked to both behaviour and demographics. We propose a composite signal analyser (CompSNN) combining three simple ANN modules. Each of these modules uses different signal representations of the trajectory while remaining interpretable. Our CompSNN performs significantly better than its modules taken in isolation and allows to visualise which parts of the signal were most useful to discriminate the trajectories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源