论文标题
嵌入在气流中的晶粒大小分布
Evolving grain-size distributions embedded in gas flows
论文作者
论文摘要
我们提出了一种数值方法,用于准确地进化出经历数字支持(例如溅射)和/或质量支持(例如破碎)过程的灰尘尺寸分布。正如通常观察到的星际灰尘分布遵循的幂律一样,我们的方法采用了幂律离散化,并同时使用每个垃圾箱中的晶粒质量和数量密度来确定幂律参数。该幂律方法是文献中分段恒定和线性方法的补充。我们发现,幂律方法超过了其他两种方法,尤其是对于小垃圾箱数。在溅射测试中,总晶粒质量的相对误差保持在0.01%以下,与bin的数量无关,而其他方法仅在n> 50或更高的情况下实现了这一点。同样,破碎的测试表明该方法在保存质量的同时还会在总晶粒数中产生小的相对误差。幂律方法不仅保留了全局分布属性,还保留了键间特征,从而使分布形状被高度恢复。对于恒定和线性方法,这并不总是发生,尤其是对于小垃圾箱编号而言。因此,在流体力学代码中实施幂律方法,因此在保持高精度的同时,可以最大程度地减少数值成本。该方法不仅限于灰尘粒分布,还可以应用于任何分布函数的演变,例如受同步辐射影响的宇宙射线分布或反compton散射。
We present a numerical approach for accurately evolving a dust grain-size distribution undergoing number-conserving (such as sputtering) and/or mass-conserving (such as shattering) processes. As typically observed interstellar dust distributions follow a power-law, our method adopts a power-law discretisation and uses both the grain mass and number densities in each bin to determine the power-law parameters. This power-law method is complementary to piecewise-constant and linear methods in the literature. We find that the power-law method surpasses the other two approaches, especially for small bin numbers. In the sputtering tests the relative error in the total grain mass remains below 0.01% independent of the number of bins N, while the other methods only achieve this for N > 50 or higher. Likewise, the shattering test shows that the method also produces small relative errors in the total grain numbers while conserving mass. Not only does the power-law method conserve the global distribution properties, it also preserves the inter-bin characteristics so that the shape of the distribution is recovered to a high degree. This does not always happen for the constant and linear methods, especially not for small bin numbers. Implementing the power-law method in a hydrodynamical code thus minimises the numerical cost whilst maintaining high accuracy. The method is not limited to dust grain distributions, but can also be applied to the evolution of any distribution function, such as a cosmic-ray distribution affected by synchrotron radiation or inverse-Compton scattering.