论文标题
六态时钟模型中相变的纠缠 - 透镜研究
Entanglement-entropy study of phase transitions in six-state clock model
论文作者
论文摘要
正方形晶格上的六状态时钟模型的Berezinskii-Kosterlitz- thouless(BKT)过渡通过角转移矩阵重量化组方法研究。纠缠熵$ s(l,t)$的经典类似物是根据温度$ t $的函数计算的,最高$ l = 129 $。该熵在$ t = t^*_ {〜}(l)$时表现出峰值,其中温度取决于$ L $和边界条件。将有限尺寸的缩放量表应用于$ t^*_ {〜}(l)$,并假设存在BKT过渡,估计这两个不同的相位转换温度为$ t_1^{〜} = 0.70 $和$ T_2^{〜} = 0.88 $。结果与较早的研究一致。应该注意的是,本研究中没有使用热力学功能。
The Berezinskii-Kosterlitz-Thouless (BKT) transitions of the six-state clock model on the square lattice are investigated by means of the corner-transfer matrix renormalization group method. A classical analog of the entanglement entropy $S( L, T )$ is calculated for $L \times L$ square system up to $L = 129$, as a function of temperature $T$. The entropy exhibits a peak at $T = T^*_{~}( L )$, where the temperature depends on both $L$ and the boundary conditions. Applying the finite-size scaling to $T^*_{~}( L )$ and assuming presence of the BKT transitions, the two distinct phase-transition temperatures are estimated to be $T_1^{~} = 0.70$ and $T_2^{~} = 0.88$. The results are in agreement with earlier studies. It should be noted that no thermodynamic functions have been used in this study.