论文标题

DeepSIP:一种用于预测通过时间多模式CNN网络故障的服务影响的系统

DeepSIP: A System for Predicting Service Impact of Network Failure by Temporal Multimodal CNN

论文作者

Matsuo, Yoichi, Kimura, Tatsuaki, Nishimatsu, Ken

论文摘要

当网络中发生故障时,网络运营商需要识别服务影响,因为服务影响是处理故障的必要信息。在本文中,我们提出了基于深度学习的服务影响预测(DEEPSIP),该系统是一种预测使用时间多模式卷积神经网络(CNN)网络元素失败导致的失败和流量损失的系统。由于恢复时间是服务水平协议(SLA)和流量损失的有用信息,这与失败的严重性直接相关,因此我们认为这是服务的影响。服务的影响很难预测,因为网络元素没有明确包含有关服务影响的任何信息。因此,我们旨在通过提取有关故障的隐藏信息来预测系统日志消息和流量量的服务影响。为了提取有用的功能,用于从syslog消息和多模式且密切相关并具有时间依赖性的流量量的预测,我们使用时间多模式CNN。与其他基于NN的方法相比,我们通过实验评估了DeepSIP和DeepSIP将预测误差降低了约50%。

When a failure occurs in a network, network operators need to recognize service impact, since service impact is essential information for handling failures. In this paper, we propose Deep learning based Service Impact Prediction (DeepSIP), a system to predict the time to recovery from the failure and the loss of traffic volume due to the failure in a network element using a temporal multimodal convolutional neural network (CNN). Since the time to recovery is useful information for a service level agreement (SLA) and the loss of traffic volume is directly related to the severity of the failures, we regard these as the service impact. The service impact is challenging to predict, since a network element does not explicitly contain any information about the service impact. Thus, we aim to predict the service impact from syslog messages and traffic volume by extracting hidden information about failures. To extract useful features for prediction from syslog messages and traffic volume which are multimodal and strongly correlated, and have temporal dependencies, we use temporal multimodal CNN. We experimentally evaluated DeepSIP and DeepSIP reduced prediction error by approximately 50% in comparison with other NN-based methods with a synthetic dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源