论文标题
具有QCD和规则的四夸克和六夸克分子状态的分析
Analysis of the tetraquark and hexaquark molecular states with the QCD sum rules
论文作者
论文摘要
在本文中,我们构造了色彩颜色 - 衬套类型的电流和颜色 - 彩色 - 彩色 - 彩色 - 彩色类型电流,用于研究标量$ d^*\ bar {d}^*$,$ d^*d^*d^*$ d^*$ tetraquark分子状态和vector具有QCD总和详细规则的分子状态。在计算中,我们选择具有能量尺度公式$μ= \ sqrt {m^2_ 2_ {t} - (2 {\ Mathbb {m}} _ c)^2} $的相关能量尺度$ \ sqrt {m^2_ {h} - (3 {\ mathbb {m}} _ c)^2} $ tetraquark和hexaquark分子状态分别以一致的方式。我们获得标量$ d^*\ bar {d}^*$,$ d^*d^*$ tetraquark分子状态和向量$ d^*d^*d^*d^*$ hexaquark Molecular态,但无法获得稳定的QCD总规则,我们获得了稳定的QCD和规则。在树级(或最低顺序)的连接(不可分割的)Feynman图及其通过替换夸克线的诱导图为标量$ d^*d^*$ tetraquark分子状态提供了积极的贡献,但对矢量$ d^*d^*d^*d^*d^*d^*d^*d^*d^*d^*d^*d^*d^*d^*d^*d^*d^*d^*d^*d^*d^*d^*d^*d^*d^*d^*D^*d^*d^*D^*D^*$ HERECURAL。区分运算符产品扩展中的彩色空间中Feynman图的可因素化和不可分割的特性是没有用或毫无意义的,以便根据Hadronic可观测值来解释它们,我们只能获得有关短距离和长距离贡献的信息。
In this article, we construct the color-singlet-color-singlet type currents and the color-singlet-color-singlet-color-singlet type currents to study the scalar $D^*\bar{D}^*$, $D^*D^*$ tetraquark molecular states and the vector $D^*D^*\bar{D}^*$, $D^*D^*D^*$ hexaquark molecular states with the QCD sum rules in details. In calculations, we choose the pertinent energy scales of the QCD spectral densities with the energy scale formula $μ=\sqrt{M^2_{T}-(2{\mathbb{M}}_c)^2}$ and $\sqrt{M^2_{H}-(3{\mathbb{M}}_c)^2}$ for the tetraquark and hexaquark molecular states respectively in a consistent way. We obtain stable QCD sum rules for the scalar $D^*\bar{D}^*$, $D^*D^*$ tetraquark molecular states and the vector $D^*D^*\bar{D}^*$ hexaquark molecular state, but cannot obtain stable QCD sum rules for the vector $D^*D^*D^*$ hexaquark molecular state. The connected (nonfactorizable) Feynman diagrams at the tree level (or the lowest order) and their induced diagrams via substituting the quark lines make positive contributions for the scalar $D^*D^*$ tetraquark molecular state, but make negative or destructive contributions for the vector $D^*D^*D^*$ hexaquark molecular state. It is of no use or meaningless to distinguish the factorizable and nonfactorizable properties of the Feynman diagrams in the color space in the operator product expansion so as to interpret them in terms of the hadronic observables, we can only obtain information about the short-distance and long-distance contributions.