论文标题

你应该在哪里停车? $ \ frac {1} {2} $ rule

Where Should You Park Your Car? The $\frac{1}{2}$ Rule

论文作者

Krapivsky, P. L., Redner, S.

论文摘要

我们在一维批次中调查停车位,汽车以$λ$的价格进入,每次都试图将其停在原始目标附近。停放的汽车也以1速度出发。一名进入驾驶员无法在停放的汽车之外看到更理想的开放位置。我们分析了一类策略,在这些策略中,驾驶员忽略了$τl$以外的空位,其中$τ$是风险阈值,$ l $是最遥远的停放汽车的位置,并试图将停车在第一个可用地点遇到的位置比$τl$更接近。当所有驾驶员都使用此策略时,当$τ= \ frac {1} {2} $停车的可能性是最大的,并且在最佳可用地点停车时,可能会出现概率$ \ frac {1} {4} {4} $。

We investigate parking in a one-dimensional lot, where cars enter at a rate $λ$ and each attempts to park close to a target at the origin. Parked cars also depart at rate 1. An entering driver cannot see beyond the parked cars for more desirable open spots. We analyze a class of strategies in which a driver ignores open spots beyond $τL$, where $τ$ is a risk threshold and $L$ is the location of the most distant parked car, and attempts to park at the first available spot encountered closer than $τL$. When all drivers use this strategy, the probability to park at the best available spot is maximal when $τ=\frac{1}{2}$, and parking at the best available spot occurs with probability $\frac{1}{4}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源