论文标题

物联网作为深度神经网络

The Internet of Things as a Deep Neural Network

论文作者

Du, Rong, Magnússon, Sindri, Fischione, Carlo

论文摘要

物联网(IoT)的一项重要任务是现场监视,其中多个物联网节点对测量值进行测量并将其传达到基站或云进行处理,推理和分析。当测量值高维时(例如,视频或时间序列数据)时,这种通信变得昂贵。带宽和低功率设备的物联网网络可能无法支持具有较高数据速率的频繁传输。为了确保沟通效率,本文提议对物联网节点的测量压缩进行建模,以及作为深神经网络(DNN)的基站或云的推断。我们提出了一个新框架,其中要从节点传输的数据是DNN层的中间输出。我们展示了如何学习DNN的模型参数,并研究了通信速率和推理准确性之间的权衡。实验结果表明,我们可以节省大约96%的传输,而推理准确性仅降解2.5%。我们的发现具有潜力,可以使许多新的IoT数据分析应用程序产生大量测量。

An important task in the Internet of Things (IoT) is field monitoring, where multiple IoT nodes take measurements and communicate them to the base station or the cloud for processing, inference, and analysis. This communication becomes costly when the measurements are high-dimensional (e.g., videos or time-series data). The IoT networks with limited bandwidth and low power devices may not be able to support such frequent transmissions with high data rates. To ensure communication efficiency, this article proposes to model the measurement compression at IoT nodes and the inference at the base station or cloud as a deep neural network (DNN). We propose a new framework where the data to be transmitted from nodes are the intermediate outputs of a layer of the DNN. We show how to learn the model parameters of the DNN and study the trade-off between the communication rate and the inference accuracy. The experimental results show that we can save approximately 96% transmissions with only a degradation of 2.5% in inference accuracy. Our findings have the potentiality to enable many new IoT data analysis applications generating large amount of measurements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源