论文标题
光谱不完整在直接校准红移分布的影响弱透镜调查中的影响
The impact of spectroscopic incompleteness in direct calibration of redshift distributions for weak lensing surveys
论文作者
论文摘要
获得星系红移的准确分布是弱透镜宇宙学实验的关键方面。用于估计和验证红移分布的方法之一是将权重施加到光谱样品中,以使其加权光度法分布与目标样本相匹配。在这项工作中,我们估算了此过程中介绍的红移中的\ textit {选择偏见}。我们这样做是通过模拟组装光谱样本的过程(包括观察者分配的置信标志),并强调光谱目标选择和红移故障的影响。我们在DES中使用第一年(Y1)弱透镜分析作为示例数据集,但其含义推广到所有类似的弱透镜调查。我们发现,使用弱透镜星系无法使用的颜色切割可以引入$ δ〜Z \ sim0.015 $的偏见,以加权的平均红移为不同的红移间隔。为了评估光谱样品中不完整性的影响,我们仅选择具有高观察者定义置信度标志的对象,并将加权平均红移与真实平均值进行比较。我们发现,在$ δ〜z = 0.005-0.05 $升级加权后,des y1弱透镜样品的平均红移通常会偏置。我们发现的偏见可以具有符号,具体取决于样品和红移间隔。对于最高的红移箱,偏差大于其他DES Y1红移校准方法中的不确定性,证明不将此方法用于红移估计的决定是合理的。我们讨论了减轻这种偏见的几种方法。
Obtaining accurate distributions of galaxy redshifts is a critical aspect of weak lensing cosmology experiments. One of the methods used to estimate and validate redshift distributions is apply weights to a spectroscopic sample so that their weighted photometry distribution matches the target sample. In this work we estimate the \textit{selection bias} in redshift that is introduced in this procedure. We do so by simulating the process of assembling a spectroscopic sample (including observer-assigned confidence flags) and highlight the impacts of spectroscopic target selection and redshift failures. We use the first year (Y1) weak lensing analysis in DES as an example data set but the implications generalise to all similar weak lensing surveys. We find that using colour cuts that are not available to the weak lensing galaxies can introduce biases of $Δ~z\sim0.015$ in the weighted mean redshift of different redshift intervals. To assess the impact of incompleteness in spectroscopic samples, we select only objects with high observer-defined confidence flags and compare the weighted mean redshift with the true mean. We find that the mean redshift of the DES Y1 weak lensing sample is typically biased at the $Δ~z=0.005-0.05$ level after the weighting is applied. The bias we uncover can have either sign, depending on the samples and redshift interval considered. For the highest redshift bin, the bias is larger than the uncertainties in the other DES Y1 redshift calibration methods, justifying the decision of not using this method for the redshift estimations. We discuss several methods to mitigate this bias.