论文标题

基于影响力的社区分区使用三明治方法用于社交网络

Influence-based Community Partition with Sandwich Method for Social Networks

论文作者

Ni, Qiufen, Guo, Jianxiong, Huang, Chuanhe, Wu, Weili

论文摘要

在生物学网络,社交网络等许多领域,社区分区是一个重要的问题。这个问题的目的是通过网络拓扑分析数据之间的关系。在本文中,我们考虑了社交网络中IC模型下的社区分区问题。我们将问题提出为组合优化问题,旨在将给定的社交网络划分为不相交的社区。目的是通过在每个社区中最大化社交网络的影响力总和。现有的工作表明了对社区分区问题(IMCPP)的影响最大的影响力。我们首先证明IC模型下的IMCPP的目标函数既不是下模型也不是超模型。然后,构建并证明了两个超模型上限和subsodular下结界,以便可以应用三明治框架。连续的贪婪算法和离散实现是针对上限和下限问题设计的,两个问题的两个问题的算法都均为1-1/e近似值。我们还设计了一个简单的贪婪来解决原始目标函数并将三明治近似框架应用到其上,以确保数据相关的近似因子。最后,我们的算法在两个真实的数据集上进行了评估,这清楚地验证了我们方法在社区分区问题中的有效性,以及我们方法对其他方法的优势。

Community partition is an important problem in many areas such as biology network, social network. The objective of this problem is to analyse the relationships among data via the network topology. In this paper, we consider the community partition problem under IC model in social networks. We formulate the problem as a combinatorial optimization problem which aims at partitioning a given social network into disjoint M communities. The objective is to maximize the sum of influence propagation of a social network through maximizing it within each community. The existing work shows the influence maximization for community partition problem (IMCPP) to be NP hard. We first prove that the objective function of IMCPP under IC model is neither submodular nor supermodular. Then both supermodular upper bound and submodular lower bound are constructed and proved so that the sandwich framework can be applied. A continuous greedy algorithm and a discrete implementation are designed for upper bound and lower bound problems and the algorithm for both of the two problems gets a 1-1/e approximation ratio. We also devise a simply greedy to solve the original objective function and apply the sandwich approximation framework to it to guarantee a data dependent approximation factor. Finally, our algorithms are evaluated on two real data sets, which clearly verifies the effectiveness of our method in community partition problem, as well as the advantage of our method against the other methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源