论文标题
量子旗歧管和kähler形式的扭曲的Hochschild同源
Twisted Hochschild Homology of Quantum Flag Manifolds and Kähler Forms
论文作者
论文摘要
我们研究了量子标志歧管的扭曲的Hochschild同源性,扭曲是HAAR状态的模块化自动形态。我们证明,每个量子标志歧管都在第二度中接受了一个非平凡的类别,其明确的代表是根据一定的投影定义的。通过Hochschild-Kostant-Rosenberg定理,相应的经典两种形式通过标志歧管上的Kähler形式识别。
We study the twisted Hochschild homology of quantum flag manifolds, the twist being the modular automorphism of the Haar state. We prove that every quantum flag manifold admits a non-trivial class in degree two, with an explicit representative defined in terms of a certain projection. The corresponding classical two-form, via the Hochschild-Kostant-Rosenberg theorem, is identified with a Kähler form on the flag manifold.