论文标题

飞机上的一类新的非注射多项式局部差异性

A new class of non-injective polynomial local diffeomorphisms on the plane

论文作者

Fernandes, Filipe

论文摘要

在此简短说明中,我们提供了一个示例,其迄今为止已知的最低程度是非注射局的局部多项式差异形态$ f =(p,q):\ mathbb {r}^2 \ to \ mathbb {r}^2 $。在我们的示例中,$ p $具有$ 10 $,$ q $具有$ 15 $,而不是$ 10 $和$ 25 $,现在是$ f $的坐标的最小学位。我们的建筑是基于S. Pinchuk庆祝了真正的Jacobian猜想的反例。

In this short note we provide the example with the lowest degree known so far of a non-injective local polynomial diffeomorphism $F=(p,q):\mathbb{R}^2 \to \mathbb{R}^2$. In our example $p$ has degree $10$ and $q$ has degree $15$, rather than $10$ and $25$, respectively, known up to now as the smallest degrees for the coordinates of $F$. Our construction was based on S. Pinchuk celebrated counterexample to the real Jacobian conjecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源