论文标题

不均匀几何布朗运动的数值方法的定性特性

Qualitative properties of numerical methods for the inhomogeneous geometric Brownian motion

论文作者

Tubikanec, Irene, Tamborrino, Massimiliano, Lansky, Petr, Buckwar, Evelyn

论文摘要

我们提供了针对不均匀的几何布朗运动(IGBM)的不同数值方法的定性特征的比较分析。 IGBM的条件和渐近平均值和方差是已知的,并且可以根据Feller的边界分类来表征该过程。我们比较了经常使用的Euler-Maruyama和Milstein方法,两个Lie-Trotter和两个Strang拆分方案以及两种基于普通微分方程(ODE)方法的方法,即经典的Wong-Zakai近似和最近提出的对数模型方案。首先,我们证明,与Euler-Maruyama和Milstein方案相比,分裂和ODE方案保留了该过程的边界特性,而与时间离散步骤的选择无关。其次,我们得出了所有被考虑的方案的条件和渐近平均值以及方差的封闭形式表达式,并分析了所得偏差。虽然欧拉山和米尔斯坦方案是唯一可能具有渐近平均值的方法,但在保存方差方面,分裂和ode方案的表现更好。 Strang方案的表现优于Lie-Trotter分裂,而Log-Ode方案则是经典ODE方法。对于许多相关的参数设置,日志对象方案的平均值和差异偏差非常小。但是,在某些情况下,两个派生的strang分裂可能是更好的选择,其中一个比对数字方法需要大得多的计算工作。提出的分析可以在其他数值方法和具有可比特征的随机微分方程上以类似的方式进行。

We provide a comparative analysis of qualitative features of different numerical methods for the inhomogeneous geometric Brownian motion (IGBM). The conditional and asymptotic mean and variance of the IGBM are known and the process can be characterised according to Feller's boundary classification. We compare the frequently used Euler-Maruyama and Milstein methods, two Lie-Trotter and two Strang splitting schemes and two methods based on the ordinary differential equation (ODE) approach, namely the classical Wong-Zakai approximation and the recently proposed log-ODE scheme. First, we prove that, in contrast to the Euler-Maruyama and Milstein schemes, the splitting and ODE schemes preserve the boundary properties of the process, independently of the choice of the time discretisation step. Second, we derive closed-form expressions for the conditional and asymptotic means and variances of all considered schemes and analyse the resulting biases. While the Euler-Maruyama and Milstein schemes are the only methods which may have an asymptotically unbiased mean, the splitting and ODE schemes perform better in terms of variance preservation. The Strang schemes outperform the Lie-Trotter splittings, and the log-ODE scheme the classical ODE method. The mean and variance biases of the log-ODE scheme are very small for many relevant parameter settings. However, in some situations the two derived Strang splittings may be a better alternative, one of them requiring considerably less computational effort than the log-ODE method. The proposed analysis may be carried out in a similar fashion on other numerical methods and stochastic differential equations with comparable features.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源