论文标题
为项目推荐建模高级社会关系
Modelling High-Order Social Relations for Item Recommendation
论文作者
论文摘要
在线社交网络的普遍性使研究社会关系如何影响用户选择是强制性的。但是,大多数现有方法仅利用一阶社会关系,即连接到目标用户的直接邻居。高阶社会关系,例如,朋友的朋友,非常有用的揭示用户偏好的信息,在很大程度上被忽略了。在这项工作中,我们专注于建模社交网络中高级邻居的间接影响,以提高项目建议的性能。与主流社会推荐人不同,将模型学习与社会关系正规化,我们建议在预测模型中直接考虑社会关系,旨在学习更好的用户嵌入以改善建议。为了应对高阶邻居随订单规模急剧增加的挑战,我们建议递归地沿社交网络“传播”嵌入,从而有效地将高级邻居的影响注入用户表示中。我们在Yelp的两个真实数据集中进行实验,以验证我们的高阶社交推荐人(HOSR)模型。经验结果表明,我们的HOSR明显胜过最新的基于图形的基于图的推荐人NSCR和IF-BPR+,以及基于图卷积网络的社会影响预测模型Deepinf,从而实现了任务的新最新技术。
The prevalence of online social network makes it compulsory to study how social relations affect user choice. However, most existing methods leverage only first-order social relations, that is, the direct neighbors that are connected to the target user. The high-order social relations, e.g., the friends of friends, which very informative to reveal user preference, have been largely ignored. In this work, we focus on modeling the indirect influence from the high-order neighbors in social networks to improve the performance of item recommendation. Distinct from mainstream social recommenders that regularize the model learning with social relations, we instead propose to directly factor social relations in the predictive model, aiming at learning better user embeddings to improve recommendation. To address the challenge that high-order neighbors increase dramatically with the order size, we propose to recursively "propagate" embeddings along the social network, effectively injecting the influence of high-order neighbors into user representation. We conduct experiments on two real datasets of Yelp and Douban to verify our High-Order Social Recommender (HOSR) model. Empirical results show that our HOSR significantly outperforms recent graph regularization-based recommenders NSCR and IF-BPR+, and graph convolutional network-based social influence prediction model DeepInf, achieving new state-of-the-arts of the task.