论文标题
通过光谱孔燃烧效果抑制量子等离子体系统中的破坏性
Suppressing Decoherence in Quantum Plasmonic Systems by Spectral Hole Burning Effect
论文作者
论文摘要
量子等离激元系统由于本质上大的耗散和辐射阻尼而遭受明显的破坏。基于我们通过量子张量网络算法的量子模拟,我们通过数值来证明这种限制性缺陷,通过将等离激元纳米腔与发射器集合杂交具有不均匀的过渡频率。通过在发射器集合的光谱密度中燃烧两个狭窄的光谱孔,杂种系统的拉比振荡的连贯时间增加了十倍。随着抑制的破坏,我们将等离子系统带入实用量子应用方面进一步走了一步。
Quantum plasmonic systems suffer from significant decoherence due to the intrinsically large dissipative and radiative dampings. Based on our quantum simulations via a quantum tensor network algorithm, we numerically demonstrate the mitigation of this restrictive drawback by hybridizing a plasmonic nanocavity with an emitter ensemble with inhomogeneously-broadened transition frequencies. By burning two narrow spectral holes in the spectral density of the emitter ensemble, the coherent time of Rabi oscillation for the hybrid system is increased tenfold. With the suppressed decoherence, we move one step further in bringing plasmonic systems into practical quantum applications.