论文标题
具有离散侧付款的游戏的平等解决方案
Egalitarian solution for games with discrete side payment
论文作者
论文摘要
在本文中,我们研究了具有离散侧付款的游戏的平等解决方案,其中特征功能是整数值得值的,并且玩家的回报是积分的向量。 Dutta和Ray于1989年推出的平等解决方案是一种以特征形式转移实用合作游戏的解决方案概念,它结合了对平等主义和促进不一致利益的承诺。我们首先指出,平等解决方案的良好属性(在连续情况下)并未扩展到带有离散的侧面付款的游戏。然后,我们证明了洛伦兹稳定集(Lorenz stable)套件,它可以被视为平等解决方案的变体,具有很好的属性,例如戴维斯(Davis)和马斯勒(Maschler)降低了游戏属性和匡威(Converse)减少的游戏属性。对于证据,我们在离散凸的分析中利用了最新结果,以减少Frank和Murota研究的M-Convex集中的最小化。
In this paper, we study the egalitarian solution for games with discrete side payment, where the characteristic function is integer-valued and payoffs of players are integral vectors. The egalitarian solution, introduced by Dutta and Ray in 1989, is a solution concept for transferable utility cooperative games in characteristic form, which combines commitment for egalitarianism and promotion of indivisual interests in a consistent manner. We first point out that the nice properties of the egalitarian solution (in the continuous case) do not extend to games with discrete side payment. Then we show that the Lorenz stable set, which may be regarded a variant of the egalitarian solution, has nice properties such as the Davis and Maschler reduced game property and the converse reduced game property. For the proofs we utilize recent results in discrete convex analysis on decreasing minimization on an M-convex set investigated by Frank and Murota.