论文标题

无监督的相发现,深度异常检测

Unsupervised phase discovery with deep anomaly detection

论文作者

Kottmann, Korbinian, Huembeli, Patrick, Lewenstein, Maciej, Acin, Antonio

论文摘要

我们演示了如何使用自动化和无监督的机器学习来探索相图,以找到可能的新阶段感兴趣的区域。与监督学习相反,在使用预定的标签对数据进行分类的情况下,我们在这里执行异常检测,其中任务是区分由一个或几个类别组成的正常数据集,而不是异常数据。 ASA范式示例,我们在确切的整数填充时以一个维度探索了扩展的Bose Hubbard模型的相图,并采用深层神经网络以完全无监督和自动化的方式确定整个相位图。作为用于学习的输入数据,我们首先使用源自张量 - 网络算法的纠缠光谱和中央张量来进行地面计算,后来我们扩展了我们的方法,并使用实验可访问的数据,例如低阶相关功能作为输入。我们的方法使我们能够揭示具有意外特性的Supersolid和超流体部分之间的相位分离区域,除了标准的超氟,Mott绝缘子,Haldane构成和密度波阶段外,还出现在系统中。

We demonstrate how to explore phase diagrams with automated and unsupervised machine learning to find regions of interest for possible new phases. In contrast to supervised learning, where data is classified using predetermined labels, we here perform anomaly detection, where the task is to differentiate a normal data set, composed of one or several classes, from anomalous data. Asa paradigmatic example, we explore the phase diagram of the extended Bose Hubbard model in one dimension at exact integer filling and employ deep neural networks to determine the entire phase diagram in a completely unsupervised and automated fashion. As input data for learning, we first use the entanglement spectra and central tensors derived from tensor-networks algorithms for ground-state computation and later we extend our method and use experimentally accessible data such as low-order correlation functions as inputs. Our method allows us to reveal a phase-separated region between supersolid and superfluid parts with unexpected properties, which appears in the system in addition to the standard superfluid, Mott insulator, Haldane-insulating, and density wave phases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源