论文标题

gromov-与中期和循环公理的根堆堆积不变

Gromov--Witten invariants of root stacks with mid-ages and the loop axiom

论文作者

You, Fenglong

论文摘要

我们研究$ r $ th root stack $ x_ {d,r} $的Orbifold Gromov-当$ r $足够大时,$ r $ th root stack $ x_ {d,r} $。我们证明,$ g $不变的属,具有一对中期$ k_a/r $,$ 1-k_a/r $是$ k_a $的多项式,$ k_a^i $ cefficients是$ r $的$ r $,$ r $,学位为$ 2g $。此外,具有一对中年的零属不变性属与中期的选择无关。作为一个应用程序,我们获得了相对Gromov的身份 - 含有的理论,可以看作是通常的循环公理的修改版本。

We study orbifold Gromov--Witten invariants of the $r$-th root stack $X_{D,r}$ with a pair of mid-ages when $r$ is sufficiently large. We prove that genus $g$ invariants with a pair of mid-ages $k_a/r$ and $1-k_a/r$ are polynomials in $k_a$ and the $k_a^i$-coefficients are polynomials in $r$ with degree bounded by $2g$. Moreover, genus zero invariants with a pair of mid-ages are independent of the choice of mid-ages. As an application, we obtain an identity for relative Gromov--Witten theory which can be viewed as a modified version of the usual loop axiom.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源