论文标题

通过密集且稀疏的限制玻尔兹曼机器模拟无序量子系统

Simulating disordered quantum systems via dense and sparse restricted Boltzmann machines

论文作者

Pilati, S., Pieri, P.

论文摘要

近年来,基于限制性玻尔兹曼机器(RBM)的生成人工神经网络已成功用作清洁量子多体系统的准确且灵活的变分波功能。在本文中,我们探讨了它们在无序量子自旋模型模拟中的使用。具有全层间连接性的标准密集RBM对于大型无序系统并不特别适合,因为在这样的系统中,人们无法利用翻译不变性来减少要优化的参数量。为了解决这个问题,我们实现了稀疏的RBM,从而仅将可见的旋转连接到局部隐藏神经元的子集,从而减少了参数的量。我们评估稀疏RBMS的性能是允许连接范围的函数,并将其与密集的RBMs进行比较。为两个无标志性的汉密尔顿人提供了基准结果,即纯量子和随机的量子链。 RBM Ansatzes是使用基于射影量子蒙特卡洛(PQMC)算法的无监督学习方案训练的。我们发现稀疏的连接有助于训练过程,并允许稀疏的RBMS优于密集的同行。此外,使用稀疏的RBM作为PQMC模拟的指导函数,使我们能够以降低的计算成本执行PQMC仿真,从而避免由于有限的随机漫步者群体而导致的偏见。我们在铁磁量子临界点处获得了基态能量和具有固定边界条件的磁化谱的预测。磁化曲线与同型不变系统的Fisher-DE Gennes缩放关系一致,包括通过重新分析分析预测的缩放维度。

In recent years, generative artificial neural networks based on restricted Boltzmann machines (RBMs) have been successfully employed as accurate and flexible variational wave functions for clean quantum many-body systems. In this article we explore their use in simulations of disordered quantum spin models. The standard dense RBM with all-to-all inter-layer connectivity is not particularly appropriate for large disordered systems, since in such systems one cannot exploit translational invariance to reduce the amount of parameters to be optimized. To circumvent this problem, we implement sparse RBMs, whereby the visible spins are connected only to a subset of local hidden neurons, thus reducing the amount of parameters. We assess the performance of sparse RBMs as a function of the range of the allowed connections, and compare it with the one of dense RBMs. Benchmark results are provided for two sign-problem free Hamiltonians, namely pure and random quantum Ising chains. The RBM ansatzes are trained using the unsupervised learning scheme based on projective quantum Monte Carlo (PQMC) algorithms. We find that the sparse connectivity facilitates the training process and allows sparse RBMs to outperform the dense counterparts. Furthermore, the use of sparse RBMs as guiding functions for PQMC simulations allows us to perform PQMC simulations at a reduced computational cost, avoiding possible biases due to finite random-walker populations. We obtain unbiased predictions for the ground-state energies and the magnetization profiles with fixed boundary conditions, at the ferromagnetic quantum critical point. The magnetization profiles agree with the Fisher-de Gennes scaling relation for conformally invariant systems, including the scaling dimension predicted by the renormalization-group analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源