论文标题

概率双网络体系结构搜索图

Probabilistic Dual Network Architecture Search on Graphs

论文作者

Zhao, Yiren, Wang, Duo, Gao, Xitong, Mullins, Robert, Lio, Pietro, Jamnik, Mateja

论文摘要

我们介绍了图形神经网络(GNNS)的第一个可区分网络体系结构搜索(NAS)。 GNNS在各种任务上表现出令人鼓舞的表现,但需要大量的建筑工程。首先,图形本质上是一种非欧几里得和复杂的数据结构,导致GNN体系结构在不同数据集中的适应性差。其次,一个典型的图形块包含许多不同的组件,例如聚集和注意,产生了一个较大的组合搜索空间。为了解决这些问题,我们为GNN提出了一个概率的双网络体系结构搜索(PDNA)框架。 PDNA不仅优化了单个图形块(微构造)中的操作,而且还考虑了如何相互连接这些块(宏观结构)。与其他图NAS方法相比,双重体系结构(微观和MARCO-Architectures)优化使PDNA可以在具有更好性能的不同数据集上找到更深的GNN。此外,我们使用完全基于梯度的搜索方法来更新体系结构参数,从而使其成为第一个可区分的图形NAS方法。 PDNA优于现有的手工设计的GNN和NAS结果,例如,在PPI数据集中,PDNA在F1分数中以1.67和0.17击败其最佳竞争对手。

We present the first differentiable Network Architecture Search (NAS) for Graph Neural Networks (GNNs). GNNs show promising performance on a wide range of tasks, but require a large amount of architecture engineering. First, graphs are inherently a non-Euclidean and sophisticated data structure, leading to poor adaptivity of GNN architectures across different datasets. Second, a typical graph block contains numerous different components, such as aggregation and attention, generating a large combinatorial search space. To counter these problems, we propose a Probabilistic Dual Network Architecture Search (PDNAS) framework for GNNs. PDNAS not only optimises the operations within a single graph block (micro-architecture), but also considers how these blocks should be connected to each other (macro-architecture). The dual architecture (micro- and marco-architectures) optimisation allows PDNAS to find deeper GNNs on diverse datasets with better performance compared to other graph NAS methods. Moreover, we use a fully gradient-based search approach to update architectural parameters, making it the first differentiable graph NAS method. PDNAS outperforms existing hand-designed GNNs and NAS results, for example, on the PPI dataset, PDNAS beats its best competitors by 1.67 and 0.17 in F1 scores.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源