论文标题
berezinskii-kosterlitz的非平衡性能 - 无与伦比的相变
Non-equilibrium Properties of Berezinskii-Kosterlitz-Thouless Phase Transitions
论文作者
论文摘要
我们采用一种新型的,无偏的骨化组方法来研究无限晶格模型中的非平衡相变。这使我们能够解决波动的微妙相互作用和平衡范围内的秩序趋势的微妙相互作用。我们研究了金属的典型模型,用于绝缘体的绝缘体过渡,这些旋转相互作用的费米子与电子浴缸结合并被纵向静态电场驱动。封闭的系统具有berezinskii-kosterlitz-在平衡极限下,金属和电荷订购相之间的无尽过渡。我们计算非平衡相图,并说明相边界对电场强度的高度非单调依赖性:对于小场,诱导的电流破坏了电荷顺序,而在较高的电场上,由于多体Wannier-stard-Stark stark stark的定位,它会重新出现。最后,我们表明这种相互作用的非平衡系统中的电流可以与电场方向相反。这种非平衡稳态让人联想到具有有效负温度的平衡分布函数。
We employ a novel, unbiased renormalization-group approach to investigate non-equilibrium phase transitions in infinite lattice models. This allows us to address the delicate interplay of fluctuations and ordering tendencies in low dimensions out of equilibrium. We study a prototypical model for the metal to insulator transition of spinless interacting fermions coupled to electronic baths and driven out of equilibrium by a longitudinal static electric field. The closed system features a Berezinskii-Kosterlitz-Thouless transition between a metallic and a charge-ordered phase in the equilibrium limit. We compute the non-equilibrium phase diagram and illustrate a highly non-monotonic dependence of the phase boundary on the strength of the electric field: For small fields, the induced currents destroy the charge order, while at higher electric fields it reemerges due to many-body Wannier-Stark localization physics. Finally, we show that the current in such an interacting non-equilibrium system can counter-intuitively flow opposite to the direction of the electric field. This non-equilibrium steady-state is reminiscent of an equilibrium distribution function with an effective negative temperature.