论文标题

通过量子储层计算实现和压缩量子电路

Realising and compressing quantum circuits with quantum reservoir computing

论文作者

Ghosh, Sanjib, Krisnanda, Tanjung, Paterek, Tomasz, Liew, Timothy C. H.

论文摘要

量子计算机需要精确控制参数和仔细的基础物理系统工程。相比之下,神经网络已经发展为忍受不精确和不均匀性。在这里,使用储层计算体系结构,我们展示了如何将量子节点的随机网络用作量子计算的可靠硬件。我们的网络体系结构仅通过优化单层量子节点来诱导量子操作,这比必须优化许多神经元的传统神经网络的关键优势。我们演示了单个网络如何诱导不同的量子门,包括通用门集。此外,在少数Quibent机制中,我们表明量子电路中多个量子门的序列可以通过单个操作来压缩,从而有可能降低操作时间和复杂性。由于关键资源是一个随机的节点网络,没有特定的拓扑或结构,因此该体系结构是用于量子计算的硬件友好型替代范式。

Quantum computers require precise control over parameters and careful engineering of the underlying physical system. In contrast, neural networks have evolved to tolerate imprecision and inhomogeneity. Here, using a reservoir computing architecture we show how a random network of quantum nodes can be used as a robust hardware for quantum computing. Our network architecture induces quantum operations by optimising only a single layer of quantum nodes, a key advantage over the traditional neural networks where many layers of neurons have to be optimised. We demonstrate how a single network can induce different quantum gates, including a universal gate set. Moreover, in the few-qubit regime, we show that sequences of multiple quantum gates in quantum circuits can be compressed with a single operation, potentially reducing the operation time and complexity. As the key resource is a random network of nodes, with no specific topology or structure, this architecture is a hardware friendly alternative paradigm for quantum computation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源