论文标题

协变熵关系的提案

A Proposal for a Covariant Entropy Relation

论文作者

Gabay, Dor

论文摘要

密度依赖性的保形杀伤量(CKV)场是由由独特的约束和克莱因 - 戈登场组成的共形转换作用获得的。 CKV将其重新表达为信息身份,并以其无数差异形式进行了零和类似时间般的测量学的研究。据推测,身份对应于一般的热力学第二定律,该定律从$(n-2)$ - 空间区域开始,在体积$ n $ n $ n $ - 和$(n-1)$ - $(n-1)$形式中包含的协变量熵。时间样的测量学继承了有效的“几何自旋”,而无效的大地测量学被建议遵守广义的协变熵,只要它们符合爱因斯坦的状态方程。为了遵守状态方程,引入了一个元齐椎管系统,从而为熵提供了新定义的能量功能。这样的熵功能介导了哈密顿量的Casimir不变性,因此保留了量子力学的符号形式。对于无效的测量学,熵的泊松支架与哈密顿量的功能可优雅地导致爱因斯坦的能量质量关系。

A density-dependent conformal killing vector (CKV) field is attained from a conformally transformed action composed of a unique constraint and a Klein-Gordon field. The CKV is re-expressed into an information identity and studied in its integro-differential form for both null and time-like geodesics. It is conjectured that the identity corresponds to a generalized second law of thermodynamics which holographically relates the covariant entropy contained within a volumetric $n$- and $(n-1)$-form, starting from an $(n-2)$-spatial area. The time-like geodesics inherit an effective `geometric spin' while the null geodesics are suggested to obey the generalized covariant entropy bound so long as they conform to Einstein's equation of state. To then comply with the equation of state, a metriplectic system is introduced, whereby a newly defined energy functional is derived for the entropy. Such an entropy functional mediates the Casimir invariants of the Hamiltonian and therefore preserves the symplectic form of quantum mechanics. For null geodesics, the Poisson bracket of the entropy functional with the Hamiltonian is shown to elegantly result in Einstein's energy-mass relation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源