论文标题
量子临界金属在有限温度下的正常状态特性
Normal state properties of quantum critical metals at finite temperature
论文作者
论文摘要
我们研究有限温度对抗铁磁或ISING-纽态状态的量子临界点附近金属的正常状态性能的影响。在$ t = 0 $ bosonic和费米子的自我呼气传统上是在Eliashberg理论中计算的,并遵守特征性强大法。量子蒙特卡洛(QMC)模拟显示出与这些预测的严重系统偏差,对理论分析的有效性产生了疑问。我们将Eliashberg理论扩展到有限的$ t $,并认为对于QMC模拟中可访问的$ t $范围,费尔米金和玻色子自我的缩放表格与$ t = 0 $的范围都大不相同。我们将有限$ T $结果与QMC数据进行比较,并为这两个系统找到良好的共识。我们认为,这可以解决该理论与QMC模拟之间的关键矛盾。
We study the effects of finite temperature on normal state properties of a metal near a quantum critical point to an antiferromagnetic or Ising-nematic state. At $T = 0$ bosonic and fermionic self-energies are traditionally computed within Eliashberg theory and obey scaling relations with characteristic power-laws. Quantum Monte Carlo (QMC) simulations have shown strong systematic deviations from these predictions, casting doubt on the validity of the theoretical analysis. We extend Eliashberg theory to finite $T$ and argue that for the $T$ range accessible in the QMC simulations, the scaling forms for both fermionic and bosonic self energies are quite different from those at $T = 0$. We compare finite $T$ results with QMC data and find good agreement for both systems. This, we argue, resolves the key apparent contradiction between the theory and the QMC simulations.