论文标题
3D异质各向异性介质中的本征纪:第一部分 - 运动学,变异配方
Eigenrays in 3D heterogeneous anisotropic media: Part I -- Kinematics, Variational formulation
论文作者
论文摘要
我们提出了一种新的射线弯曲方法,称为特征雷方法,用于求解在3D平滑异质性各向异性各向异性弹性介质中的两点边界值运动和动态射线追踪问题。所提出的特征雷方法旨在提供可靠的固定射线路径解决方案及其动态特性,如果基于常规的初始值射线射击方法收敛到固定路径的情况下,则变得具有挑战性。运动学射线跟踪解决方案对应于消失的第一个行进时间变化,导致固定路径,并由非线性二阶Euler-Lagrange方程(第I部分)控制。在第二部分中,我们详细介绍了所提出方法的理论方面,并验证其对一般各向异性的正确性。在第三部分中,我们使用有限元的方法,应用弱公式。在第四部分中,我们提出了一种有效的方法,可以使用全球旅行时间Hessian计算整个固定射线路径的几何扩散。在第五部分中,我们制定了动态射线追踪,考虑了第二个旅行时间变化,这导致了线性的二阶雅各比方程,在第六部分中,我们将所提出的Lagrangian方法与常用的汉密尔顿方法联系起来。该解决方案是在第七部分中提供的,我们实施针对运动学问题的类似有限元方法。在运动学问题和动态问题中,在节点之间,射线特性的值是用赫米特插值计算的,我们发现这对于各向异性介质最自然。我们区分了两种类型的固定射线,可提供最小或鞍点旅行时间(由于苛性速度)。
We present a new ray bending approach, referred to as the Eigenray method, for solving two-point boundary-value kinematic and dynamic ray tracing problems in 3D smooth heterogeneous general anisotropic elastic media. The proposed Eigenray method is aimed to provide reliable stationary ray path solutions and their dynamic characteristics, in cases where convergence to the stationary paths, based on conventional initial-value ray shooting methods, becomes challenging. The kinematic ray tracing solution corresponds to the vanishing first traveltime variation, leading to a stationary path, and is governed by the nonlinear second-order Euler-Lagrange equation (Part I). In Part II we elaborate on theoretical aspects of the proposed method and validate its correctness for general anisotropy. In Part III we use a finite-element approach, applying the weak formulation. In Part IV we propose an efficient method to compute the geometric spreading of the entire stationary ray path using the global traveltime Hessian. In Part V we formulate the dynamic ray tracing, considering the second traveltime variation, which leads to the linear second-order Jacobi equation, and in Part VI we relate the proposed Lagrangian approach to the commonly used Hamiltonian approach. The solution is provided in Part VII, where we implement a similar finite element approach applied for the kinematic problem. In both kinematic and dynamic problems, in between the nodes, the values of the ray characteristics are computed with the Hermite interpolation, which we find most natural for anisotropic media. We distinguish two types of stationary rays, delivering either a minimum or a saddle-point traveltime (due to caustics).