论文标题
分形中的配置
Configurations in Fractals
论文作者
论文摘要
我们将配置的多种形式定义为在一致下确定的欧几里得空间中$ K $点的商集,并证明了$ \ mathbb {r}^d,d \ geq 2 $的紧凑子集的大型Hausdorff Dimension的大型Hausdorff Dimension的配置集。我们的方法简化了ARXIV的先前工作:1708.05919,并达到了更好的维阈值。
We define the manifold of configurations to be the quotient set of $k$ points in Euclidean space identified under congruence, and prove that compact subsets of $\mathbb{R}^d, d \geq 2$, of large Hausdorff dimension have a non-null set of configurations in them. Our method simplifies previous work in arXiv:1708.05919 and achieves a better dimensional threshold.