论文标题
关于野外生命体征的基于WiFi的监测
On Goodness of WiFi based Monitoring of Vital Signs in the Wild
论文作者
论文摘要
WiFi通道状态信息(CSI)已成为一种合理的方式,用于感应不同的人类生命体征,即呼吸和身体运动,这是WiFi设备之间传播的调制无线信号的函数。尽管这是一个了不起的主张,但该空间中的大多数现有研究都在努力承受超出实验条件的稳健性能。为此,我们仔细研究了野外人类呼吸和身体运动下的WiFi信号动力学。我们首先表征由人类呼吸和身体运动调节的WiFi信号组件 - 多径和信号子空间。我们推断出一组转换,包括一阶分化,最大范围的归一化和组件投影,这些转换忠实地解释和量化了WiFi信号上呼吸和身体运动的动力学。以这种特征为基础,我们提出了两种方法:1)一种呼吸跟踪技术,该技术模拟了在随时间变化的信号子空间中观察到的峰动力学和2)2)一种体现运动跟踪技术,该技术是用不断发展的信号子空间的多维聚类构建的。最后,我们在实用的睡眠监控应用中反思这些技术的表现。我们的系统评估是来自550多个用户的超过550个小时的数据,这些用户涵盖了视线(LOS)和非视线(NLOS)设置,这表明所提出的技术可以实现与专用脉冲多普勒雷达相当的性能。
WiFi channel state information (CSI) has emerged as a plausible modality for sensing different human vital signs, i.e. respiration and body motion, as a function of modulated wireless signals that travel between WiFi devices. Although a remarkable proposition, most of the existing research in this space struggles to withstand robust performance beyond experimental conditions. To this end, we take a careful look at the dynamics of WiFi signals under human respiration and body motions in the wild. We first characterize the WiFi signal components - multipath and signal subspace - that are modulated by human respiration and body motions. We extrapolate on a set of transformations, including first-order differentiation, max-min normalization and component projections, that faithfully explains and quantifies the dynamics of respiration and body motions on WiFi signals. Grounded in this characterization, we propose two methods: 1) a respiration tracking technique that models the peak dynamics observed in the time-varying signal subspaces and 2) a body-motion tracking technique built with a multi-dimensional clustering of evolving signal subspaces. Finally, we reflect on the manifestation of these techniques in a practical sleep monitoring application. Our systematic evaluation with over 550 hours of data from 5 users covering both line-of-sight (LOS) and non-line-of-sight (NLOS) settings shows that the proposed techniques can achieve comparable performance to purpose-built pulse-Doppler radar.