论文标题

无机金属卤化物钙钛矿中离子结构和动力学的有效建模

Efficient Modelling of Ion Structure and Dynamics in Inorganic Metal Halide Perovskites

论文作者

Balestra, Salvador Rodriguez-Gomez, Vicent-Luna, Jose Manuel, Calero, Sofia, Tao, Shuxia, Anta, Juan A.

论文摘要

如今,金属卤化物钙钛矿(MHP)是研究最多的半导体之一,因为它们在太阳能电池中作为活性层的表现出色。尽管MHP是极好的固态半导体,但它们也是离子化合物,在该化合物中,离子迁移在其形成,光伏性能和长期稳定性中起决定性作用。鉴于上述复杂性,基于经典力场的分子动力学模拟特别适合研究MHP特性,例如晶格动力学和离子迁移。特别是,建模混合组合物的可能性很重要,因为它们与优化光节间隙和稳定性最相关。出于这种意图,我们采用DFT计算和遗传算法来开发有效的完全可转移的经典力场,该电场有效,对基准无机钙钛矿组成集CSPB(BR_XI_(1-X))_ 3(x = 0,1/3,2/3,1)。所得的力场正确地重现了对所有组合物有效的共同参数集,实验晶格参数是溴/碘化比率的函数,离子离子距离和纯和混合结构的XRD光谱。纯化合物的模拟热导率和离子迁移激活能也与实验趋势吻合。我们的分子动力学模拟使您可以预测离子扩散系数对溴/碘化物比率和空位浓度的组成依赖性。对于9 10^21 cm^-3左右的空置浓度,我们在CSPBBR3和CSPBI3的环境温度下分别获得了离子扩散系数。有趣的是,与纯化合物相比,我们预测空位迁移的活化能明显降低,而混合钙壶的扩散速度更快。

Metal halide perovskites (MHPs) are nowadays one of the most studied semiconductors due to their exceptional performance as active layers in solar cells. Although MHPs are excellent solid-state semiconductors, they are also ionic compounds, where ion migration plays a decisive role in their formation, their photovoltaic performance and their long-term stability. Given the above-mentioned complexity, molecular dynamics simulations based on classical force fields are especially suited to study MHP properties, such as lattice dynamics and ion migration. In particular, the possibility to model mixed compositions is important since they are the most relevant to optimize the optical band gap and the stability. With this intention, we employ DFT calculations and a genetic algorithm to develop a fully transferable classical force field valid for the benchmark inorganic perovskite compositional set CsPb(Br_xI_(1-x))_3 (x = 0,1/3,2/3,1). The resulting force field reproduces correctly, with a common set of parameters valid for all compositions, the experimental lattice parameter as a function of bromide/iodide ratio, the ion-ion distances and the XRD spectra of the pure and mixed structures. The simulated thermal conductivities and ion migration activation energies of the pure compounds are also in good agreement with experimental trends. Our molecular dynamics simulations make it possible to predict the compositional dependence of the ionic diffusion coefficient on bromide/iodide ratio and vacancy concentration. For vacancy concentrations of around 9 10^21 cm^-3, we obtained ionic diffusion coefficients at ambient temperature of 10^-11 and 10^-13 cm2/s for CsPbBr3 and CsPbI3, respectively. Interestingly, in comparison with the pure compounds, we predict a significantly lower activation energy for vacancy migration and faster diffusion for the mixed perovskites.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源