论文标题
相机布置的手性域
The Chiral Domain of a Camera Arrangement
论文作者
论文摘要
我们介绍了相机$ \ MATHCAL {a} = \ {a_1,\ dots,a_m \} $的手性域,这是$ \ mathbb {p}^3 $的子集中的子集中的$ \ mathcal {a} $。它概括了手性的经典定义,其中包括所有$ \ mathbb {p}^3 $,并提供了一个统一的框架来研究多浏览性手性。我们对手性域的代数描述给出了代数描述,该域使我们能够定义和描述Triggs关节图像的手性版本。然后,我们使用手性域重新衍生并扩展了由于哈特利引起的手性结果。
We introduce the chiral domain of an arrangement of cameras $\mathcal{A} = \{A_1,\dots, A_m\}$ which is the subset of $\mathbb{P}^3$ visible in $\mathcal{A}$. It generalizes the classical definition of chirality to include all of $\mathbb{P}^3$ and offers a unifying framework for studying multiview chirality. We give an algebraic description of the chiral domain which allows us to define and describe a chiral version of Triggs' joint image. We then use the chiral domain to re-derive and extend prior results on chirality due to Hartley.