论文标题

带有双向图像预测的概率视觉导航

Probabilistic Visual Navigation with Bidirectional Image Prediction

论文作者

Hirose, Noriaki, Taguchi, Shun, Xia, Fei, Martin-Martin, Roberto, Tahara, Kosuke, Ishigaki, Masanori, Savarese, Silvio

论文摘要

人类可以坚固地遵循由一系列图像(即视频)定义的视觉轨迹,而不管环境的实质变化或障碍物的存在如何。我们旨在将类似的视觉导航功能赋予仅配备RGB Fisheye相机的移动机器人。我们提出了一个新型的概率视觉导航系统,该系统学会遵循以双向视觉预测为基于可能导航速度进行双向视觉预测的一系列图像。通过通过双向预测(从开始到目标,反之亦然),我们的方法扩展了其预测范围,使机器人能够绕过视频轨迹不可见的看不见的大障碍。通过模仿人类的传统人,学习如何对视野中的障碍和潜在风险做出反应。由于人类的远程操作命令是多种多样的,因此我们提出了轨迹的概率表示,我们可以采样以找到最安全的路径。集成到我们的导航系统中,我们提出了一种新型的定位方法,该方法基于在视觉轨迹中达到不同图像所需的虚拟预测轨迹来渗透机器人的当前位置。我们在多个模拟和真实环境中进行定量和质量评估我们的导航系统,并与最先进的基线相比。我们的方法在目标到达率,亚目标覆盖率,次目标覆盖率以及按路径长度(SPL)(SPL)加权方面的最新视觉导航方法优于最新的视觉导航方法。我们的方法还推广到训练中从未使用过的新机器人实施例。

Humans can robustly follow a visual trajectory defined by a sequence of images (i.e. a video) regardless of substantial changes in the environment or the presence of obstacles. We aim at endowing similar visual navigation capabilities to mobile robots solely equipped with a RGB fisheye camera. We propose a novel probabilistic visual navigation system that learns to follow a sequence of images with bidirectional visual predictions conditioned on possible navigation velocities. By predicting bidirectionally (from start towards goal and vice versa) our method extends its predictive horizon enabling the robot to go around unseen large obstacles that are not visible in the video trajectory. Learning how to react to obstacles and potential risks in the visual field is achieved by imitating human teleoperators. Since the human teleoperation commands are diverse, we propose a probabilistic representation of trajectories that we can sample to find the safest path. Integrated into our navigation system, we present a novel localization approach that infers the current location of the robot based on the virtual predicted trajectories required to reach different images in the visual trajectory. We evaluate our navigation system quantitatively and qualitatively in multiple simulated and real environments and compare to state-of-the-art baselines.Our approach outperforms the most recent visual navigation methods with a large margin with regard to goal arrival rate, subgoal coverage rate, and success weighted by path length (SPL). Our method also generalizes to new robot embodiments never used during training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源