论文标题
从分子动力学模拟中扩散系数的最佳估计值
Optimal estimates of diffusion coefficients from molecular dynamics simulations
论文作者
论文摘要
经常根据分子动力学模拟估算平移扩散系数。线性拟合到平均平方位移(MSD)曲线已成为事实上的标准,从简单液体到复杂的生物大分子。在短时间内,MSD曲线中的非线性具有多种临时实践,例如数据的部分和零件拟合。在这里,我们提出了一个严格的框架,以获得扩散系数及其统计不确定性的可靠估计。我们还以定量的方式评估观察到的动力学确实是扩散的。通过考虑不同时间MSD值之间的相关性,我们减少了估计器的统计不确定性,从而提高了其效率。通过Kolmogorov-Smirnov测试,我们检查了可能的异常扩散。我们为扩散系数的估计提供了易于使用的Python数据分析脚本。作为例证,我们将形式主义应用于纯TIP4P-D水和单个泛素蛋白的分子动力学模拟数据。在同伴论文中[J。化学物理。 XXX,Yyyyy(2020)],我们证明了其能够识别在普通轨迹“解开”方案中由系统错误引起的常规扩散偏差的能力,该方案在流行的仿真和可视化软件中实现。
Translational diffusion coefficients are routinely estimated from molecular dynamics simulations. Linear fits to mean squared displacement (MSD) curves have become the de facto standard, from simple liquids to complex biomacromolecules. Nonlinearities in MSD curves at short times are handled with a wide variety of ad hoc practices, such as partial and piece-wise fitting of the data. Here, we present a rigorous framework to obtain reliable estimates of the diffusion coefficient and its statistical uncertainty. We also assess in a quantitative manner if the observed dynamics is indeed diffusive. By accounting for correlations between MSD values at different times, we reduce the statistical uncertainty of the estimator and thereby increase its efficiency. With a Kolmogorov-Smirnov test, we check for possible anomalous diffusion. We provide an easy-to-use Python data analysis script for the estimation of diffusion coefficients. As an illustration, we apply the formalism to molecular dynamics simulation data of pure TIP4P-D water and a single ubiquitin protein. In a companion paper [J. Chem. Phys. XXX, YYYYY (2020)], we demonstrate its ability to recognize deviations from regular diffusion caused by systematic errors in a common trajectory "unwrapping" scheme that is implemented in popular simulation and visualization software.