论文标题

$ \ Mathfrak {su}(8)$的代表为Pauli

Representation of $\mathfrak{su}(8)$ in Pauli Basis

论文作者

Chew, K. Y., Shah, Nurisya M., Chan, K. T.

论文摘要

量子计算开始成为研究的重要领域,因为它对我们当前的计算能力的升级具有巨大的希望。研究量子状态的演变是理解导致量子计算的量子信息的良好基础。这是通过相应的数学工具(例如Lie Group和Lie代数)协助的。在这项研究中,$ \ mathfrak {su}(8)$的Lie代数在三个Pauli矩阵之间表示。这是通过构建广义的Gell-Mann矩阵并将其与Pauli基础进行比较来完成的。这项研究将明确显示Gell-Mann矩阵与Pauli基础类似于坐标的变化的一对一相关性。在处理量子电路问题时,这特别有用。

Quantum computation started to become significant field of studies as it hold great promising towards the upgrade of our current computational power. Studying the evolution of quantum states serves as a good fundamental in understanding quantum information which lead to quantum computation. This was assisted with the respective mathematical tools such as Lie group and Lie algebra. In this study, the Lie algebra of $\mathfrak{su}(8)$ is represented in tensor product between three Pauli matrices. This is done by constructing the generalized Gell-Mann matrices and compared to the Pauli basis. This study will explicitly shows the one-to-one correlation of Gell-Mann matrices with the Pauli basis resembled change of coordinates. This is particularly useful when dealing with quantum circuit problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源