论文标题

使用3D U-NET定位的肾脏分割,以期望最大化

Kidney segmentation using 3D U-Net localized with Expectation Maximization

论文作者

Bazgir, Omid, Barck, Kai, Carano, Richard A. D., Weimer, Robby M., Xie, Luke

论文摘要

肾脏体积在几种肾脏疾病中受到很大影响。肾脏的精确和自动分割可以帮助确定肾脏大小并评估肾功能。完全卷积神经网络已用于从大型生物医学3D图像中分割器官。尽管这些网络显示出最新的分割性能,但它们并未立即转化为MRI数据集中的小型前景对象,小样本量和各向异性分辨率。在本文中,我们提出了一个新的框架,以应对细分3D MRI的一些挑战。这些方法是在临床前MRI上实施的,用于在狼疮肾炎的动物模型中分割肾脏。我们的实施策略是双重的:1)利用其他MRI扩散图像来检测一般肾脏区域,以及2)减少3D U-NET内核来处理小样本量。使用这种方法,使用n = 196的有限数据集实现了骰子相似系数为0.88。通过仔细优化的这种分割策略可以应用于各种肾脏损伤或其他器官系统。

Kidney volume is greatly affected in several renal diseases. Precise and automatic segmentation of the kidney can help determine kidney size and evaluate renal function. Fully convolutional neural networks have been used to segment organs from large biomedical 3D images. While these networks demonstrate state-of-the-art segmentation performances, they do not immediately translate to small foreground objects, small sample sizes, and anisotropic resolution in MRI datasets. In this paper we propose a new framework to address some of the challenges for segmenting 3D MRI. These methods were implemented on preclinical MRI for segmenting kidneys in an animal model of lupus nephritis. Our implementation strategy is twofold: 1) to utilize additional MRI diffusion images to detect the general kidney area, and 2) to reduce the 3D U-Net kernels to handle small sample sizes. Using this approach, a Dice similarity coefficient of 0.88 was achieved with a limited dataset of n=196. This segmentation strategy with careful optimization can be applied to various renal injuries or other organ systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源