论文标题
liouville键入定理和解决方案的规律性,以归化或奇异问题第二部分:奇数解决方案
Liouville type theorems and regularity of solutions to degenerate or singular problems part II: odd solutions
论文作者
论文摘要
我们考虑具有分歧形式的一类方程式,具有单数/退化重量$$ - \ Mathrm {div}(| y |^a(x,x,y)\ nabla u)= | y | y |^a f(x,y)+\ textrm {div}(div}(div}) $$根据适当的规律性假设,用于矩阵$ a $,强迫项$ f $和field $ f $,我们证明了解决方案的hölder连续性,这些解决方案的连续性在\ y \ in \ mathbb {r} $中是奇怪的,并且可能是其衍生物。此外,我们还显示了$ c^{0,α} $和$ c^{1,α} $的先验界限,以近似问题的形式$$ - \ mathrm {div}(((\ varepsilon^2+y^2+y^2) u)=(\ varepsilon^2+y^2)^{a/2} f(x,y)+\ textrm {div}(((\ varepsilon^2+y^2)^{a/2} f(x,x,y))我们的方法基于爆炸和适当的liouville型定理。
We consider a class of equations in divergence form with a singular/degenerate weight $$ -\mathrm{div}(|y|^a A(x,y)\nabla u)=|y|^a f(x,y)+\textrm{div}(|y|^aF(x,y))\;. $$ Under suitable regularity assumptions for the matrix $A$, the forcing term $f$ and the field $F$, we prove Hölder continuity of solutions which are odd in $y\in\mathbb{R}$, and possibly of their derivatives. In addition, we show stability of the $C^{0,α}$ and $C^{1,α}$ a priori bounds for approximating problems in the form $$ -\mathrm{div}((\varepsilon^2+y^2)^{a/2} A(x,y)\nabla u)=(\varepsilon^2+y^2)^{a/2} f(x,y)+\textrm{div}((\varepsilon^2+y^2)^{a/2}F(x,y)) $$ as $\varepsilon\to 0$. Our method is based upon blow-up and appropriate Liouville type theorems.