论文标题

通过跨矛盾训练进行半监督语义细分

Semi-Supervised Semantic Segmentation with Cross-Consistency Training

论文作者

Ouali, Yassine, Hudelot, Céline, Tami, Myriam

论文摘要

在本文中,我们提出了一种基于跨跨性的新型半监督方法,用于语义分割。事实证明,一致性训练是一个强大的半监督学习框架,用于利用集群假设下的未标记数据,在该假设中,决策边界应位于低密度区域。在这项工作中,我们首先观察到,对于语义分割,在隐藏表示中,低密度区域比输入更为明显。因此,我们提出了跨矛盾训练,其中预测的不变性是在应用于编码器输出的不同扰动中实施的。具体而言,使用可用标记的示例以监督的方式对共享的编码器和主要解码器进行了培训。为了利用未标记的示例,我们在主要解码器预测与辅助解码器的示例之间实现一致性,将其作为输入的编码器输出的不同扰动版本,从而改善编码器的表示。提出的方法很简单,可以轻松扩展以使用其他训练信号,例如跨不同域的图像级标签或像素级标签。我们进行一项消融研究,以嘲笑每个组件的有效性,并进行广泛的实验,以证明我们的方法达到了最新的方法,从而导致了几个数据集。

In this paper, we present a novel cross-consistency based semi-supervised approach for semantic segmentation. Consistency training has proven to be a powerful semi-supervised learning framework for leveraging unlabeled data under the cluster assumption, in which the decision boundary should lie in low-density regions. In this work, we first observe that for semantic segmentation, the low-density regions are more apparent within the hidden representations than within the inputs. We thus propose cross-consistency training, where an invariance of the predictions is enforced over different perturbations applied to the outputs of the encoder. Concretely, a shared encoder and a main decoder are trained in a supervised manner using the available labeled examples. To leverage the unlabeled examples, we enforce a consistency between the main decoder predictions and those of the auxiliary decoders, taking as inputs different perturbed versions of the encoder's output, and consequently, improving the encoder's representations. The proposed method is simple and can easily be extended to use additional training signal, such as image-level labels or pixel-level labels across different domains. We perform an ablation study to tease apart the effectiveness of each component, and conduct extensive experiments to demonstrate that our method achieves state-of-the-art results in several datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源